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THE LINMRIZED SUBSONIC FLOW ABOUT SYMMETRICAL

NONLIFTING WING-BODY COMBINATIONS

By John B. McDetitt

SUMMARY

Methods are presented for determining the linearized subsonic flow
about symmetrical, nonlifting wing-body combinations. The wing is repre-
sented by a suitable planar distribution of elementary sources in accord-
ance with the usual assumptions of linearized, thin-airfoil theory. The
required boundary condition for tangential flow at the body surface is
met by distributing along the body tis suitable distributions of three-
dimensional sources ud multiples. As part of the present snalysis, a
theory is presented for determining the flow about circular or noncircular
bodies by the use of ~ald.y distributed sources and multiples. The flow
over thin, nonlifting airfoils hating symmetrical profiles is also studied
in considerable detail, and it is shown that the concept of the obliqpe

6’ source filament cm be used in obtaining numerical results for wings having
tapered as well as untapered plan forms.

“a
A comparison of theory and experiment is made for two 47 sweptback

wings in corribinationwith basic Sears-Haack bodies of revolution snd in
combination with the basic bodies indented according to Whitconibts tran-
sonic area rule. The effect of indenting the body on the pressure US-
tribution near the wing-body juncture is of particular interest for swept-
wing and body combinations. The effeet of the area-rule indentation was
to adjust the pressure field near the body so that the wing surface isobars
tended to follow the local sweep lines of the wing.

INTRODUCTION

Linearized theories for predicting the mibsonic pressure distributions
on thti wings or slender bodies have been developed in considerable detail
but comparatively Utile attention has been directed taward the problem
of predicting the subsonic pressure distributions on wings and bodies in
cotiination. The existing theories for detexmitig the subsonic flow about

+ wing-body combinations are based on the assumption of extremely slender
wings and bodies in accordance with the basic concepts of slender-body
theory as initiated by Max Mumk and R. T. Jones (refs. 1 and 2) and

‘i extended by numerous authors (see, in particular, refs. 3 to 6).
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33 the present paper the fundamental solutions of linearized, three-
dimensional-fl.owtheory are used in the develo~ent of a practical method
for calculating the subsonic flow about nonlifting wing-body combinations.
(The use of linearized theory requires, of course, that the wing be thin
and the body slender but does not require the assumption of extreme slen-
derness involved in slender-body theory.) In the present method parti.c-
ular emphasis is placed on the practical application of the theory. No
attempt is made to estimate the accuracy of calculated results using this
method but a comparison of theory and experiment is protided.

In the smalysis which follows,”general relations-hipsare first derived
for determining the strengths of the wing planar sources and the singulari-
ties at the body center he so as to satisfy the required bcmndary con-
dition for tangential flow at the wing-body surface. Next, the body alone
and the wing alone are considered, ad finally, the wing and body in
combination are considered.

PRIMARY SYMBOLS

A

%9%

b

%

c

Cj

%

CT

E
~

f

%

wing aspect ratio

Strengbhs of axial.

wing span

multiples according to linearized theory

pressme coefficient,
pressure divided by

local wing chord

local pressure minus free-stream
free-stream dynamic pressure

reference chord near wing-body junction (chord through
point of intersection of body =a wingleading edge)

chord at wing center line

chord at wing tip

static

the

source strength

body fineness ratio (body length divided by maximum body
diameter)

mul.tipolestrength parameter (see eq. (34))

w

—
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U,v,w

-plan-foml
%-CT

convergence factor, —
b/2

body length (distmce from nose to theoretical point of
closure)

lateral distance to extended wing vertex for III= 1 (see
sketch (Z))

free-stresm Mach number

see sketches (e), (f), and (m)

see sketch (c)

polar coordinate in yz plane

body radius

body radius at wing leading edge

radius of equivalent circular body hawing equal.cross-
sectional area

incremental distortion Or body

having eqml cross-sectionaJ-

cross-sectional area of body

wing thickness to chord ratio

free-stream velocity

7

shape from the circular shape
area

‘(x)‘V((3)‘v(r) )
total velocities

Ll,v>w ~ perturbation velocities normalized by division by the

‘(YJ’v(y)’v(z)J- free-stresm velocity

‘(r) radial conq@nent of perturbation velocity in yz plane

‘(t)‘v(n)
tangential and normal perturbation velocities for an oblique

source filament (see sketch (f))



azimuthal com~nent

radial..perturbation
6ources

[1‘(r)w - ‘(r)wav

of perturbation velocity

velocity at body surface

x -x

Cartesian coordinates

wing profile ordinate

airfoil slope in

modified airfoil

stresxmise direction

slo~e (see eq. (59))

Cartesian coordinates normalized by division
chord

NACA TN 3964

in yz plane

inducedby wing

——

by a reference

Cartesian coordinate measured from the leading edge of the e

reference chord Cj (see sketch (o))

variable of integration (see sketches (g) and (Z))
$

E+v t~ Ae

JpY(

sin2A+p2cos2A = ~1-@co~A

ratio of specific heats (for air 7 = 1.4)

polar angle in yz plane

CT
wing plm-form taper ratio, ~

perturbation potential

angle of sweep, positive

effective aagle of sweep
compressibility rule

when swept back

according to the GUthert

●
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*

(-) variable of integration

5

. ( )’ first derivative with respect to the free-stream direction

( )“ second derivative with respect to the free-stream direction

‘n>%)% titiple influence functions (see eqs. (28) to (30))

subscripts

av

b

e

J

LIE

TE

w
.

average

body

equivalent configuration of the G5thert

condition along wing-body junction

wing leading edge

wing trailing edge

order of multipole

wing

compressibi~ty rule

x>Y#zje partial &rivative6 when not enclosed by parentheses

GENERAL THEORY

Statement of the Problem

~ this yayer methods are presented Um

for determining the subsonic flow about
nonlifting wing-bdy combinations.
These methods are based on the usual n
assumptions of linearized flow theory.
The flow over the wing is to be deter-

1)
=?

mined by representing the nonlifting
wing by a suitable distribution of
planar sources. The wing is assumed
to extend through the body as indicated r

\ in sketch (a).

*
\
t

Sketch (a)
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It is further assumed that the wing-bob combinations possess both
*

lateral and vertical symmetry. The required boumdary condition for tan-
gential flow at the body surface is to be sdisfied by placing along the w
body axis (which is coincident with the wind direction) stitable -al.
distributions of sources and multiples. -

Boundary Conditions for Tangential Flow
at the Wing or Body Surface

If F(x,y,z) = O is the general eqpation determining a bo@ or wing
shape in Cartesian coordinates, the bounda~-”condition for tangential
flow at the surface is

@F+vim+waF=o

ax b 32
(1)

In cylindrical coordinates the boundary condition can be written as

where F(x,R,@) = O dete?mdnes the body shape.

(2)

Wing theory.- If the ordinates for a thh airfoil are represented
by the function

and the boundary

z= Z(X)y), then

F(x,y,Z) =

condition at the

Z-z(x,y) = o

surface is

~az+v~azw=o
ax ay (3)

For linearized, thin-airfoil theory, the second term cam be neglected,
u= Um(l+u) is replaced by U~,

dz
w =— Z+-o

ax
(4)
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*

Body theory.- If the radii of a body,
. sketch (b), are represented by the function

R= R(x~(3); the bo&dary con~tion at the
body surface is

(5)

m- the partial derivatives =/bx and
(bR/&3)/R are small, V(x) is approximated

by Uw and the boundary condition in terns Sketch (b)
of perturbation velocities at the body surface
is

(6)

Co~res sibility Corrections

9

The rules of correspondence between Mnearized compressible and

b incompressible flow in two dimensions were @ven originally by Prandtl.
The extension of these rules to include flows in three dimensions was
made by G5thert (ref. 7). The use of the G&Ghert rule is as follows:
First, the lateral and vertical dimensions of the configuration are
reduced by the factor ~ so as to obtain sn !Iequivalent”configuration.
The equivalent sweepback & of the wing referehce line (or oblique
source filament) is obtaine~ from

tsn A
tm~=—

P

Thus, the quantities sin A and cos A are replaced by

sin%=
sin A sin A=—

~sin2A+132co@A PA

Cos ~ = f3cos A 13cos A=—
$Ain2A+!32coS2A

(7) “

(8)
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Next, the incompressible flow about the equivalent configuration is
determined. Finally, the compressible flow is obtained from the calcul-
ated incompressible flowby increasing the velocity potential by the
factor l/P2, the axial-perturbationvelocity is increased by the factor
l/p2, and the lateral and vertical velocities are increasedby the factor
l/~ (the pressure coefficient is increasedby the factor l/13a).

The exact expression

I&essure Coefficient

for the pressure coefficient (isentropic flow)
is

[(CP=A 1+

7W2

In order to obtain au
eqyation may be

7-1
+

-
2

Mm=
{ })- ]
l-[(l+u)2+v2+#] -1 (9)

approximation consistent with linearized theory this
expanded ta give (see, e.g., ref. 8)

v_

c1?= -2u-(v2+w2)+&u?+M%l(v2+#) + . . . (lo)
&

For the linearized flow past planar systems,.the first term is sufficient.
For slender bodies it is necessary to consider additional.terms ad the ●

appropriate expression is (in cylindrical coordinates)

% = -2u- [ 1‘(r)2+v(8)2

r Nonlifting Thin-Airfoil T&my

The basic I.inearizedpartial differential
is the well-known Prmdtl-Glauert equation

(H.&)&+cpw.iqzz = o

where & is the free-stream Mach number and
ycltential..

.

(u)

equation for subsonic flow

(12)

Q(X,Y,Z) is the perturbation .

w
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Perturbation potential and velocities.- The perturbation potential
subject to the boundary condition of eqwtion (4) caa be written in the
form (see ref. 9 for the fundamentals of source-sink theory)

(13)

where the re@.on of integration X extends over the entire plan form of
the wing. This solution repres~ts the ptential due ta a plauar (z = O)
distribution of sources having stren@h E per unit area.

The stresmwise, lateral, and vertical perturbation velocities induced
by the planar distribution of sources are:

*= 1 J B (x-X)E(5?,PT)dX@
U(x,y) =

ax 4@2um ~

{

s/2

(x-x)2+p2[(y-~)2+z2]
)

(14)

(16)

Determination of the source strength distribution.- An approximation
for the source strength E can be obtained by finding a bomdary value
for w(x,y) as z + O and.using that result in conjunction with the
boundary condition of eqyation (4).

The boundary value for w as z +- O+ is to be obtained from
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(X,fly,fiz) The above integmnd

everywhere for z =

NldAl =

TN 3964

Is zero

O except

*\
atthe~intx=~, y =Y

Pm
where a singularity of the
kind 0/0 occurs; conse-

sinAtdZ quently E (X,7) may be
replaced by E (x,Y) ~d
removed from under the inte-
.gral signs. h order to

E ! it+dii t x evaluate this equation it is

Sketch (c)

where

N= = j (X-%)2 +-@2[(y-~)2+z2] .
Iw%=

sin Al

Finally there is obtained,

wZ=o+ =E-h%rsin‘Lml
o 0

E(x,PY)=—
2pum
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This result is subject to the boundary condition (4) and hence the source
strength is defined as

&

EWEZL. *p %(X,PY)
Um

(17)
dx

where ~dx is the airfoil slope measured streamwise along the upper
surface of the wing.

Source filaments. - In many cases, where the tig plan-form edges are
straight-line elements, the use of source filaments in the mathematical
representation of the fiow is advantageous. la this way the determination
of the perturbation ptential is reduced from a two-dimensional integra-
tion over the entire plsn form to a single integration performed in the
stresmwise direction. Details concerning the use of source filsments
will be presented later in this reprt.

The General Solution in Cyllndrica.1Coordinates for a
Line of &cLally Distributed Singularities

The linearized potential equation in cylindrical coordinates is

(l-lJ&)cp#prr +: Cpr+ij r+ee = o (18)

The linearized spatial flow about bodies or wing-body combinations reqpires
a consibration of suitable distributions of sources and multiples along
the body axis with the axLs of the multiples aligned with the wind axis.
The general solution of equation (18) consists of an infinite set of basic
singularities referred to as multiples (ref. 9, p. 527).

Perturbation ~temtisl and velocities.- The perturbation velocity
pctential of a H.ne of sxially distributed multiples of order n in
compressible flow is

1[ J
z

-1
(pr)ncos II(3

1+.@)dx
q(x,r,e] = —

4Y432n o [ (x-X)2+(~r)2]n+(112) +

J
-L

(pr)nsin ne
~(x)m

0 [(X-X)2+ (~r)2 ]n+(l/2 )1

(19)

where ~(x) and ~(x) represent multipole stren@hs.
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The perturbation velocity components csm be obtained from equa-
tion (19) by partial differentiation in the ayial, radial, and azimuthal
directions. If it is assumed that ~(0) =An(Z) =0 and %(O) = ~(z) = O,
the velocity components are:

1 L
2 (x-X) [&(5E)cos ne+~(5?)sin n8]

u(xjr,e) = — ‘(2R+1)(~r)n
J

dX
4s@2 ~ o [ (x-Z)2+(pr)2 ]D+(s/2)

(20)

V(r)(x,r,e) Jz[An(X)cos ne+~(~)sin ne]

o [(x-Z)2+(~r)2]n+(l/2)

.

m+

I* (2n+l)(jh)n+’ JL[An(X)cos ne+~(~)sin ne]

11 0 [(x-~)=+(~r)=]n+(3’2)

z[&(7?)sin ne-~(=)cos ml]
V(e)(x,r,e) s&)ydn-’J ,(x-y,2+(,r,2,n+(l,2)

n o

If the change of variable

5=

is made, the above equations can be

&z

6? (21)

(22)

written in the following forms

1-x

(23)

~(x+J3r5)sin (24) #

w
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V(r)(x,r,e) =

where

(26)

fn(s) =

gJE) =

hn(~) =

L

(52+1)n+(l/2)

(52+1)
Il+(d2)

1

(52+1)
n+(s/2)

(27)

(28)

(29)

(30)

me variations d tie mu== ~ctions ~(~), ~(~)j and~(~)
with ~ are shown in figure 1 for values of n eqpal to O, 1, md 2.

An alternative expression for the axial perturbation velocity
involving the influence function fn(~) is obtained from equation (25)
by integrating once by parts

.

u(x,r,tl)=
+1-&~

. n

(An’cos nEl+&’sin nO)fn(~)6

(31)
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Anr
.Pr %(x+Pr~l

m

In
sources

the preceding
results when

solution appears; for

results, the solution for
n is set equal to zero.

s.naxial distribution of
For n = 1 the “dipole”

n . 2, the llquMpole” solution; etc. For small.
values of 13r the attenuation of &-e induced perturbation velocities
with increasing radial distsmce 13r varies approximatelyas l/(Pr)n+l.

‘Wtingvd”es for ‘(r) ‘d”(e) as ‘r+ O*-~eurect We Of
the preceding eqyations in boundary-walue problems is difficult since the
unknown raultipolestrengbh functions must be related to the boundary con-
dition (6). An approximation for the strength functions in terms of
boundary values csa be obtainedby first investigating the limiting values

‘0’ ‘(r) ‘d V(@) U ‘r+oc The following change of variable is made

(see sketch (d)),

~(x-~)z+~gr==% (&r) A = sin-l

J-

flr As ~r ~ O it i.spermissible
to replace ~(~) and~(~) by
An(x) and%(x). Consequently
there are obtained the fol.low-

1 I ‘ng Utitingnlues ‘or ‘(r)
o x x L

‘d ‘(e)
as 13r+O:

~Z, &ctA
sin~A

Sketch (d)

(32)



Kn
[~(x) sin ne-~(x)cos ne] (33)

4fi9(13r)n+1

where

K= =2

(2)(4) . . . (2n)

(1)(3) = . Q (a-l) 1

(34)

Equations (32) and (33) till be.——
conditions in subseqmnt sections of
multiple strength distributions for

used with appropriate boumdary
this reprt in order to determine
ahnder bodies or wing-hody

combinations.

The Munk-Jones Slender-Body Theory

b

It might be well to point out here the essential differences between
linearized-theory as used-in this paper smd the “slender-body” theory.
initiated by Munk and R. T. Jones (refs. 1 smd 2). b the Munk-Jones
theory, wtich has been applied and extended by numerous authors (see, in
particular, refs. 3 to 6), the first term of the Prandtl-Glauert equa-
tion (12) is neglected in comparison with the second and third. The rate
of change of the stresmndse perturbation velocity is considered to be
small in comparison with the rate of change of the vertical and lateral
perturbation velocities. The application of slender-body theory involves
solutions which satisfy Laplace’s eqmtion in planes normal to the free-
stream direction, and the stresmn.d.secoordinate enters only as a parameter
introduced by the body or wing-body cross-sectional area. For an tial
distribution of singularities the slender-body counterpart of equation (19)
is:

43-ccp(x,r)= 2~’(x)Zn ~ - ~’ (x)Zn[x(Z-x)] -
J

‘S#(x)-~’ (x) ~ +

o Ix-z]

1[m~(x)cos n6 ~(x)sin ne

rn + ~n 1
n=l
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where Sb’ is the first derivative of the body cross-sectionsl area snd
the parameters ~(x) and bn(x) represent the ruul.tipolestrengths.

The above relationship is a valid approximation only in the near
vicinity of the body. It should be noted that the slender-body potential
for a rmltipole of order n = 1 or greater depends only on the parameters
w(x) or bm(x) snd does not involve a Mne integration as In linearized

LA. .

theory. tie tich nmnber effect enters only throu@ the first term.

THE NONIIIFI’INGWING IN SUBSONIC FLOW

The nonlJ.fting wing in subsonic flow may be represented by a suitable
planar distribution of three-dimensional sources according to eq~-
tion (13). If the wing leading and trailing edges are straight-ld.ne
elements, and if the wing profile is geometrically similqr at all span~se

..

stations, the evaluation of the flow over the -g Cm be best perfo~d “-– .
by a con~ideration
double integration
integration.

of elementary source filsments. In this way, the
indicated by eqmtion (13) is reduced to a single

Uatapered Wings
●

The flow about thin untapered wings has been studied in considerable
detail (see, e.g., refs. 10 to 13). The follotig discussion presents

● —

certain additional considerations useful for numerical techniques.

The elementary source filament in incompressible flow.- Consider the
source filsment of constant strength E/Um per unit len@h (incompressible
flow) shown in sketch (e). The perturbation velocity 5V (all velocity

(0,0) (y,o) -l’d-
Sketch (e)

Y*Y
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components are normalized by ditision by the free-stresm velocity) induced
by the incremental source filament of length ~ at the pcdnt (y,N) is
@V&l by

The tangential perturbation velocity induced by the entire source
filament is @.ven by

J
I.$

V(tl(Y,N) = - sin h 6V

and the radial perturbation velocity is given by

Consider next the oblique

N~.zZ+(y sinA-x CosA)S

Q- (sin V=+sin u=)
47qJi

(37)

source filamnt shown in sketch (f). The

/

‘[n)

(X,y, z)

io, o,o)

u~

A
Sketch (f)
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normal and tangential velocity components induced at the point (x,Y,z)
are

yn)(%Y,4 = & (sin ~+sin p,)

V(t)(x,Y,z) = * (Cos ~=-cos Q
m

The velocity components in the x,y,z directions are

‘(x) = ‘(t) ‘in‘-v(n)
cos u cos A

‘(Y) = ‘(t) ‘Os‘+V(n)cos w sin A

‘(z) = ‘(n)sin w

(38)

(39)

(4(I)

(41)

(42)

&

.

The sweptback wing.- The relationships gl.venbyequations (38) to (42)
csm be used to determiue the compressible flow over thin, nonlifting, uta-
pered wings if the GMhert rule is applied and if the source strength is
defined as

4

E— = 21COS ~]pz~ti-
Um

(43) “

where Zf is the x-wise slope of the airfoil surface. Since only
untapered wings are being considered here, the variable x is to be
replaced by x-Y smd an integration performed from = = O to 2 = c,
The factor cos & appears in eqpation (43) since it is more convenient

—

to perform the integration in the stresmwise direction rather than in the
direction normal to the oblique source filament. The absolute value signs
are used in order that the somce strength shall be properly defined for
left-hand wing pmels as well.as for right-hand wing panels.

.

.
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Consider the sweptback wing skown in sketch (g) where a coordinate
system made dimensionless with respect to the root chord is used. The

(0,0) - m

Left-hand
source filament Right-hand

eaurce filament,
(= Z+PqtanAe

Sketch (g)

tial. lateral. and vertical perturbation velocities for a compressible
flow &e to be-obtsdned by ev&mtion of the

2YC132U(W$)=

M3v(3,%c) =

Right -hd wing

following:

J
1

Cos & \ ‘z’f(Y)dT
(45)

o

.

The first integrals on the right-hsnd side of equations (kk) ti (k6)
represent
integrals
f(z), for

‘(x)

the source filaments on the tight-hand wing panel and the second
those of the left-hand wing psmel. The q-mrtities
the ri@t-hsnd wing are:

f(x)’ ‘(y)’

(

Cos ~=-cos y
=

N
1, sj.n&-~fi ‘~sti ‘2) cOs ~ cosAe (471
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‘(Y) = (
cos p2 -Cos ~=

N )

f(z) =

NACA m 3964

(

sin p=+si.np=
Cos J&+

N )
Cos u sin & (48)

(
sin Kl+sin lJ2

) sin w (49)
N

Althouh these mautities can be expressed in algebraic terms with
the help of-sketch (~) and then stistituted into the eq?ressions for the . -
velocity components (eqs. (44] to (45)), it is more convenient for numer-
ical techniques to retain the identity of certain elementary qmtities
because of the extensive repetition involved in obtaining the final
velocity components
wing, the folJ.owing

u, v, and w. For the right-hand panel of a sweptback
are required:

(d = tsxl-’ ~
%.

(50)

where

(It

and

should be noted

Cos u=~/1~1

that in the plane of the wing N reduces to N = 1%1
= Sigil~o)

.

.
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&
The relationships given Um

by e~tions (~) to (2) were _c~~Aa
. derived for a right-hand,

cosA,
–sinAc -sinAe

sweptback wing panel. These
results apply to other wing
panels if the proper sign is
affixed to cos & and -Pq

sin & according to sketch

(h). The distsnce P(b/2)
is negative for left-hand -cosAC cosA~
wing panels. sinAO sinA,

The infinite obliqu
ting.- Formulas for the per-
turbation velocities induced
by the infinite obliqpe wing
can be obtained by use of the
previous relationships if the
infinite oblique wing is considered
to be compsed of two semi-infinite
wing panels as shown in sketch (i).

For the left-hand wing panel,
~= = n/2, RI= -Pq cos Ae-(E-F)sin 4,.
=d~=- pq sin Ae+(~-r)cos A=. For

the right-hand wing panel, V= = Ye/2,.
~ = ~q cos ~+(~-~)s~ ~, ~d

~ = ~q sti &-(~-T)cos &. The use
of these definitions together with
the definitions for N, y=, and w
given in equation (~) lead to the
following eqmtions for perturbation
velocities:

Left-hand I Righ?-hattd
wing panels wing panels

t

Sketch (h)

\

~ m

Right-hand
Left-hand wing panel
wingpanel

1

t

Sketch (i)

COS24

J

= [kh’Isti Ae-(&~COS Ae]j3Z’d~
-—

Yc o (~L)2+[&l sti Ae-(&~)cos Ae]2
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Since the origin for q is immaterial for the infinite wing it is more
convenient to write these eqpations for q = O,

(53)

(54)

(55)

where sin & and cos ~ are definedby eqyation (8).

When the perturbation velocities are evaluated in the plane of the
wing (~ = O), it is permissible to set ~ = O in equation (53) but not in
equation (55). However, equation (55) reduces to w = Z! when evaluated
in the plane of the wing.

If equation (53) is evaluated in the plane of the wing,

cos A

f

Z’d~
U(g,o) = - — —

@A o T-E
(56)

it is seen that the presswe coefici~t for ~n-airfoil ~eorY (Cp = -2u)
changes with Mach number according to the factor

*

.

1 1—= ‘J== (57)
PA

For the unswept wing this factor reduces to-the Prsadtl-Glauert factor
1/$. The dependence of the compressibility effect on the Mach number
component normal to the sweep Une was pointed out by R. T.
reference 14.

The leading-edge singularity for round-nose airfoils.-
airfoils the slope Z’ is infinite at the nose and changes.—
value in the immediate vicinity of the nose. For numerical

been found convenient to replace the airfoil slope Z’ by

Jones,

For round-nose
rapidly in .

work it has

.
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(%)“m=&
emd the source strength (eq. (43)) by

This modification is

E—= 21COS fqpz’mdx
TT
“co

illustrated in II -l

(59)

sketch (j) for an NACA 64AO08 profile. The r

I

L1
effect of this nmdification is to reduce some- 1 ------—

what the absolute values of the calculated &

IIperturbation velocities in the immediate ticin- ,
ity fore and aft of the nose. ~ reference 15 t

I
it is suggested that the followlng
(due to R1.egel)be used,

U(x,z) =
u~(x,o)

m
.

correction 1
\

L

II
\
\\

. where U is the total velocity over the tirfoil,
to the linearized value. This is equivalent ta

which has the limiting value u = -1 at the nose.

o
6 .1

Sketch (j)

the subscript L refers

However, it is not
possible to apply the Riegel rule at locations slightly fo%rd of the
airfoil nose.

The use of the modified airfoil slope Z‘m permits one to calculate
reasonable and consistent perturbation velocities everywhere except at the
wing leading and trailing edges where first-order theory gives infinite
values except when the wing profile is cusped. For numerical work the
calculated streamwise and lateral perturbation velocities in the plane of
the wing have been terminated with values -COS2A and cos A sin A, respec-
tively, at the wing leading md traitig edges. The pressure coefficiavt

. may be estimated by mibstitution of the values u = -COS2A and
v = cos A sin A into equation (9).



The inherent singularity at ( = O as N + O.- If a numerical.
technique is used, the inherent singularity for ~ . 0 at N -O can

the fol.lotingmanner. For the infinite oblique wing .

~ = O as ~ -+ ~ is avoided by writing eqyation (53)
be circumvented in
the singularity at
in the form

(60)

I
[\
, \,
[ \\

integrand of eq.@4 ~ ~

--
tit

0 % (; t.0
\\ I I

\l I

Sketch (k)

where 5 is any convenient
subinterval bracketing the
singular point, see sketch (k).
The integrand of the second
integral of equation (60) has
the following finite value at
the singular point

.
where Z“(~) is the second
derivative of the airfoil ordi-
nate evaluated at the singular
point.

For swep~ wings sm inherent singularity in the plane of the wing
occurs when ~ has the value

The singular integrals of equations (~) and (45) for ~ = O can be avoided
by writing these integrals in the form
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.

.

(62)

o

4.

. E-= F* (where 5
right-hsnd SideS

convenient svbinterval bracketing the singular point

=0). The titegraads of the third integrals on the
of equations (62) =d (63) have the limiting values

2 sin A,j3Z’

and

2 Cos A,$z’

1 1

1

- — . lppztl
P(b/2) PTI PV
Cos & Cos A, Cos A,

1-—W&3_ A ‘4-4PZ”
.CosA, cos Ae Cos A,

.
respectively, at the singular pint. (This technique for avoiding the
singularityy in the plane of the wing was illustrated preciously for the
infinite oblique wing in sketch (k).)
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The distortion velocity at the center Line of a sweptback wing .- At
center line of the swepthack wing a unique result is obtained whereby
stresmwise velocity is found to be equal to that for the infinite

-

oblique wing plus a distortion velocity ;f the Ackeret type (proportional
to Z’), see reference 1.1,I-2,or 13. TIKLsresult is easily obtained in

—

the following maaner. First consider the right-hand, sweptback wing panel.
The streamwise perturbation velocity at the center line can be obtainedby
use of the relationships of equatiom (~) to (~) with ~ = 0, ~ = ti/2,

N = 1%1. mere is obtained

(64)

Ih the first inte~al q can be set equal.to zero snd the result is equal 4

to one half that for the infinite oblique wing. The results for the left-
hand, sweptback wing psnel can be expressed in a form identical with
equation (64). T!hus,the distortion
(Pq = 0),

‘d = ‘center
line

iS giVen by

velocity at the wing center line,
d

-u
obliq~e
wing

It is clear that the above integrand is zero everywhere for p~ = O
except at the singular point where the integrand is 0/0. In order to
obtain the limit, an integration is performed from ~-~q tan &-b to

~-pq tan Ae-e and from ~-13~tan &+e to ~-pq tsm Ae+b with BZ’(~)
replaced by- ~Z’(~)+13Z’’(~)~.The Cauchy priRciyal value is obtained by
letting e +0 and the final result is independent of 8,

.
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It
of
is

at

Cos ~zqq ~n l+sinf&
I+@) = -

Trp l-sin &

27

(65)

should be pointed out here that, in the original body contouring method
Ktichemann(ref. 13), the
assumed to be that given

For sweptback
the center line

wings of
for L =

distortion velocity at the wing-tidy j&cture
by equation (65).

finite aspect ratio the perturbation velocity
o is

u=

where R= =
singular at

~ the

‘oblique + ‘d +
wing

(

(E-r)sin 4 andR2
the singular point

imnediate ticinity

=F(F-O&s 4.
= .

of the tip of a
streanmdse perturbation velocity may be

U=u
oblique
wing

(The above integral is not

sweptback wing the
approximated by the following:

‘d-—
2

Wings Having Tapered Plan Forms

The thdn, nonlifting wing with tapered plan form has been considered
in references 16 and 17’where an evaluation of eqmtions (14) to (16) was
performed by integration in the streamwise direction first, and nmnerical
results could be obtained only by laborious expansions into infinite
series. However, as till be shown by the folloting snalysis, it is pos-
sible to compute the flow about the tapered wing by use of the source
filament concept in a ~er sidlar to that for the untapered wing.
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Fundamental relationships.- Consider the tapered wing panel in
sketch (2) (the ecyxi.valentplan form according to the affine transforma-
tion of the G&hert rule is shown), where tie ~ng Profile iS ge~etfi-
cal.lysimilar at all.spantise stations; that is, Z! is constant for a

given angle a. The integration over the wing plan form indicated by

nUa

(OP

(rto

L
/7

(1 ,0’

- W’h)dy- f3L

~C*C .

Sketch (1)

equations (14) to (16) is obtained by first integrating with respect to
s, keeping the sngle u constant. The restits of this line integration
may be thought of as representing the influence function for a line, or
filament, of source-like singularities.

me sources lying tittin the tapered) shaded area of sketch (Z) are
replaced by sn equivalent souce I-ineJor ff.~ent~ ha~g stren~

.

.
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per unit length of ~,
see sketch (m). The
perturbation velocity
components induced by
this source filsment
in directions normal
and tangential to the
filsment are

8“

\t 8V03}

Sketch (m)

J
IJ2

‘(n) =
Cos ?&

-v=

pz ‘=—
23-C[( )

j3L ~--
-Sina z.

N

J’
v=

‘(t) = - sin ?@v

-v=

[( )j3zI ‘?L R=—-
sln a=—

211 N

1(sin ~2+sin ~=) + (Cos y2-cos ~=) da (66)

(COS V2-cos V=)-(sin Wa+sin V=) +

(67)

and the stresmwise, lateral, and vertical velocity components induced by
the filament are given by equations (40) to (42). The quantities N, R=,

%J ~> PI} ~d v~ are the same quantities defined previously by eqpa-
tions (~] to (~). !lheparsmeter ~, see sketch (2), is related to the
sngle u by the following relationship
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8

For
variable
replaced

The

<

F
a = cot- )Cotls -—

~ PL

mnnerical work it is convenient to use the parameter
of inte~tion; hence, da in equations (66) and (67)
by

lcosAe \
da = %d~= d~

d~ $L/cos ~

(68)

~ as the
is to be

(69)

sweptback wing.- The perturbation velocities induced by the
right-hand wing panel show in sketch (Z) are obtained
of the following:

J
1

2fip2u= [ ,x)+%,]d~]Cosf@z’ g
o

1
1

23@v =
[ (Y,+~(Y)]d~

Ices AJ3z’ g

o

21r13w =
J’ [ ,z,+qz,]d~

‘[cos AJPz’ g

o

by evaluation

(70)

(m)

(72)

.

where

(

RI

)[(
)Sin &-(ti ‘,:in ‘1).0s u .os&]

Cos p2-Cos ~L

g(x) = 1-
~L /COS ~ N

(73)

( “RI
g(z)= 1-

)p L/cos &

(74) -

r

in p2+sin ~1

)
sin U (75) -

N
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h(x) =

h(y) =

h(z) =

,.,:s~{sfi~‘“[CTX=Y91-
(Sti v2+sin I.Ll]Sin &-(cos ~-cos IJ=)COS 61 cos &!}

1(sin p=+sin V=)cos &+(cos V=-cos Vl)cos u sin Ae

1

[
(co’ I-L2-COS Pl)sin ~

p L/co’ ~ 1

When the parsmeter P~/cos & becomes infinitely large the

(76)

(77)

(78)

h
functions Vani=h and the g ‘funct~ons reduce to the relationships given

. previously for the untapered wing (eqs. (47) to (49)). If the plan-form
convergence factor, defimed as

is small, say less than
equations (70) to (72).

‘A CR-CT—=
P ~(b/2) .

0.5, the h functions may be neglected in

(79)

Evaluation of the streamwise ad lateral.perturbation velocities in
the pl.me of the *g.- If a numerical technique is used, the singularity

in the plane of the wing at F* (that is, at N = O) can be avoided by a
procedure similar to that used for the untapered wing, with the exception
that the log term appearing in h(x) =qy) must be evaluated sepa-

rately. For ~ = O it is convenient to wz’iteeqyations (70) and (71) in
the fo?m

.

.
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flco’A,l[[’z’g(x)lF*+g+[’z’g(x)l p+
~*-5

(80)

#

jl cos A= 1
0

[Pz%,y,]-@%(y)] d~+-

F*+5 F*-5

(81)

where 5 is sny small, convenient subinterval (say b = 0.05) bracketing
the singular point.

.

.

The first three integrals of eqyations (80) and (81) are not singular.
The third in~grals of eqyations (8o) snd (81) have the following limiting
values, as b + O for a right-hand wing panel,

.

.
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(sin Aecos A&z’ gilj Jb-l
2 —.

$ IJcos Ae
Cos Ae Cos

snd

.

1 1--—

5(b/2) ~~ Pq,— - ——

+

resuectivel-Y,at the singular point. (me indicated partial derivatives
may-be eval~ted graphically.)

The integrands of the fourth integrals of eqwtions (8o) and (81-)
are logarithmically singular at E a F* and do not change siga at the
singular point ~. These integals can be evaluated approximately if

~(b/2) ~~

~ < P7/co6 Ae <- Cos &
> as follows:

sin & sin Ae
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,

.

[

p(b/2) p~

1
—-—
Cos ~ Cos l&

1 \-

At the wing center line the lateral velocity is zero because of
symaetry. For nmnerical work, the stresmwise perturbation velocity can-
not be obtained from equti.on-(80) by setting -~~ = O since the =ction

g(x) contains an indeterminant form for Bq = O. However, equation (8o)

can be used at the wing center line if the qutity 2Yr132Udis added to

the right -hand side. At the wing center tie the third i~te~al o-fequa-
tion (80) has the following-ltiting value as ~ + O:

4

At the wing center line
the approxbnate value,

[

sin A#z’

Cos‘e j3(b/2)/cosAe -

the fourth integral of

pz”1
equation (8o) contributes

.
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L J

The above results for the ri@t-hand, sweptback wing panel can be
used for other wing panels if the sias of cos ~ and sin ~ are chsnged

in accordance with the siga convention of sketch (h). The angle a, which
is the complement of the G6thert equivalent sweep single ~, is considered
to be a ~sitive angle (in the second quadrant) when measured counterclock-
wise as in sketch (1). For the left-hand Sweptback wing panel, the angle
cr is measured clockwise and hence is a negative angle (in the fourth
qwdra?lt). The distances P(b/2) smd ~ L are considered to be negative
for left-hsnd wing panels.

The linearized

SUBSONIC FLOW ABOUI NONLIFTING BODIES

spatial flow about bodies can be represented by
suitable axial distributions of sources and multiples according “tothe
general solution (19) where the body axis and the axes of the multiples
are all~ed with the wind -s. It is assumed that the body cross-
sectionsl area distribution terminates with zero first derivative,
s’(o) =S’(z) =0. It is further assumed that the function describing
the body shape, R(x,e), is single-valued in e and possesses snmoth snd
continuous partial &rivatives.

When equtions (32) to (34) are used in conjunction with the boundary
condition (6) there results the following general requirement to be sat-
isfied in the evaluation of the strength distribution functions ~ and

%’

n
~pR

I

Kn a$R
[An(x)sin ne-~(x)cos ne] — -

=+ ~q 4fi(~R)n+L 13Ra6’

n

I

%2
[&(x)cos r@+~(x)sin ne] = O (82)

nq 4Yt(@R)n+L
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Axially Symmetric Bodies

For circular bodies, the source solution (n
involved snd the boundary condition (82)

where Sib(x) is the

mAo(x) =2Yc~R— =
ax

first derivative of

The perturbation-velocity

u(x,r) = ~
4%

and the pressure

Or
V(r)(x,r)=:

reii. uces

.

.

= 0) is the only solution
to

P%’’b(x) (83)

the body cross-sectional area.

compcnmrts are

J’z (X-z)s ‘b(x)

o [(X-32+9%219’=

J
2

S’b(z)

o [(X=)2+6-2 ]3’2

ax

&z

coefficient is to be calculated from

(84)

(85)

.

CP = -*u-v(r)2

When the strength distribution of an axial source line cannot be
expressed analytically, the integration of equations (84) and (85) must
be performed by a suitable numerical mesm. Although the integrsnd is
not singular at X = O for either equation, the integrand of eq.mti.on(84)
changes si~ and varies greatly in magnitude near % = x for small pr.
Consequently, the numerical evaluation of eqpation (84) is simplified
consitirably if the region of integration is separated into subintervals
(see sketch (n)) and this equation written in the form

x < L/2

(0;0) (X:o) (2X,0) (L;o)

x > L/2

I I 1
(0,0) [2x-t?,o) (x,0) (tlo)

Sketch (n)

.

.

I
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Nonsymnetric Bodies

For the flow about bodies which do not pssess axial symmetry, a
consideration of both sources and multiples is reqyired. The body
shape may be desi.gnatedby
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L

n

L
R(x,O) =~(X) + ~(X,@ (88) -

n=z

where R is the radius of a circular body ha-g sm identicd axial
distribution of cross-sectional area ~(x) and where ARa is the incre- -‘-
mental change in body radius associated with the nth order multiple”” ‘-
distribution.

In most practical cases the body till possess vertical and lateral
symmetry and will be nearly circular in cross section. In this case the
boundary condition (82) can be simplified to the following,

I~13R 1 n—-—
ax 4s(

n=o,2,4,...‘P:n+’ ‘(x)cos ‘e = 0

(89)

In order to solve equation (89) for the strength functions ~(x] it
is convenient to express the body slope in the form (primes denote
differentiationwith respect to x),

●

n

1“

PAR’n(x,O)(pR)n+l
13R’(x,6)=~~’(X) +

n=2,4,6,...
(p~)n+l

It is assumed that the even function
represented by a Fourier cosine series and

n

~R’(x,8) =pfl’(x) +
z

n=,4,6,.. .

where

(w) -

pm ‘ = ~(R’-fi’)canbe
thus eqyation (~) becomes

~(x)cos n(3
(91)

(~R)n+L

(%)
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*
If the relationships (91) and (g2) are substituted into (89) andif

the coefficients of cos ne are set equal to zero, there resflts b the
. fol.lotingsolutions for the source snd multipole stren@hs:

~ = 2@2M’

J

lc/2
16-—

‘“Kn ~
BAR’(PR)n+lcos ne M

1

(93)

where

m’(x,e) =R’(x,G)-fi’(x)

Once the source and multipole strengths have been determined, the
perturbation velocities maybe evaluatedby the use of eqpations (20)
to (31).

WING-BODY COMBINATIONS
.

It is assumed that the
wing-body combination FOS-
sesses both lateral and ver-
tical symmetry and a coordi-
nate system is used which is
dimensionless with respect
to the junction chord md
with origin as shown in
sketch (o). ‘I!hebody radius
is denotedby R smd~ is
used, when the body is non-
circular, to denote the
radius of sn equivalent cir-
cular body having identical.
cross-sectional area.

The boundary condition
to be satisfied at the body
surface is

.

. t~j

Sketch (o)
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~R+v@%~:~R n

I

n

~R ae Rae ‘(0)n-v(r)w-v(r)n=o -I ‘(r)n = o (9L)

11=2,4,. .. n==Y4) “““

.

.

where v
(r)w ‘d ‘(e)w

are the radial.and azimuthal velocities induced

by the wing (which is assumed to extend through the body from wing tip
to ting tip as imlicatedin sketch (o)). The radial velocity inducedby
the axial sources is denoted by V(r)n=o, and v(r)nandv(e)~ represent

the contributions of the axial multiples.

The strengths of the axial sources are chosen so as to provide the
required body volume or, more specifically, the body cross-sectional.areas,
and to eliminate the average of the wing-induced radial velocities at each ...
axial station. The average ting-induced radial velocity is defined as

[da.=:[“v(r): (95)

.

The strengths of the axial multiples we chosen so as to complete
the cancellation of the wing-induced radial velocities and, for non-
symmetric bodies, to provide, in addition, the required distortion

.-

~(~j~e) = R(3~,0)-R(~j) from the circular shape having eqti area.

Determination of Axial Souxce
Multipole Strengths

Bodies hating circular cross sections.- When
circular in cross section, the boundary condition

P ‘V(r)w

n

-1 ‘v(r~n
n=o,2,4,. ..

snd

the body shape is
at the body surface is

=0 (96)

where the radial velocities, v
(r)=’

induced by the axial sources and

multiples can be cqressedin te”ms of the strength functions ~(~d)
by the use of equations (32) and (34).

.

.
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Since we are considering only symmetrical, nonllfting wings, it is
possible to represent the tig-induced radial velocity by a Fourier cosine
series involving only the even harmonics,

%)w ‘~(Ej)+~(E~)cOs 2e+a4(Ej)c0s M + ● ● ●

where

J’
Ye/2

ao(~j) =% ‘v(r)WW [1=B‘(r)W
o av

J
YT/2

%(5J) =: ‘v(r)W
Cos ne de

o

(97)

(98)

(99)

thus,

A consideration of ecjyations(32), (96), and (1~) leads to the
foILowing definitions for the axial source md multipole strengths:=

b J’
Yr/2

16$,—=- — ‘Av(r)wcos @ ~
(@R)n % ~

(101)

(102)

Bodies hating noncircular cross sections.- If the body shape is
noncircuhr (but possesses both l.aterd.md vertical symmetry), it is
convenient to represent the body shape by

NEj?@ s N+wj$e) (103)

.
%he q-tity Av(r) a~aring in equations (lCQ) snd (102) can be

w
. ‘eplacedby ‘(r)w ‘f ‘0 ‘Si=d”
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where &l is an even function in e. Tne axial source strengths are
&V~ by

(104)

where ~.&2
The strengths of
the cancellation

is the equivalent body having eqml cross-sectional area.
the -al multiples are to be chosen so as to complete
of the wing-induced radial velocities at the body surface

and to provide the reqtired-distortion LR from the equivalent circular” “- -
shape.

The boundary condition for determining the multipole strengbhs is

If the above eqyati.onis evaluated for a constsnt ~j, at appropriate

azimuthal angles e, a set of simultaneous equations is obtained involving
the unknown parameters %. If the lody shape is nearly circular the
azimuthal derivative ~R/a~ may be neglected, and, if the body slope is
approximated according to eqyation (90)$ the mltipole str~dhs are ~ven
approximately by

(106)



43

Pressure Distributions

Once the source and multipole strength distribution functions have
been determined the pressure distributions may be calculated by first
obtaining the perturbation velocities and then using equation (10) or (11).
At the body surface the pressure coefficient is approximately

Cp=-’6+2i)-(qr
n=o

while at the wing surface the thin-airfoil approximation

CP .-<%+’f%-)
n=o

The general solutions for the perturbation velocity

cm be used,

potential
(eqs. (13Y md (19)) behve properlj at large tistsmces from the wing
or body, that is,

U,v,w + o

as the distance becomes infinitely large. The theory presented in this
report can be used to calculate pressure distributions in the neighbotig
flow field as well as at the ting-body surface.

ILLUSTRATIVE EXAMPLES AND COMPARISON WITH EXPERIMENT

h order to illustrate and, to a certain extent, justify the practical
use of the present method for calculating presswe distributions for wing- ~
body combinations, a comparison of some Weo=tical- ~d eWer~tal

results till be presented. Because of the current interest in area-rule
concepts, a comparison of theoretical -d measued tig-body j~ct~e
pressures wi~ be made for two sweptback figs of aspect ratios 3 smd 6
in combination with basic Sears-Haack bodies of revolution and in combi-
nation with the basic bodies indented according to Whitcomb’s trsnsonic
area tie (ref. 18). The experimental data used in the following com-
parison with theory were obtained in the Ames 14-foot transonic wind
tunnel.
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.

Theoretical Pressure Distributions at ~ = 0.85 for
an Aspect-Ratio-6 Wing in Cotiination With a

Bade and Area-Rule Indented Body

The pla-fomn details of the aspect-ratio_-6ting in combination with
a basic Sears-IIaackIIodyof fineness ratio 11 and in combination with the
basic body indented according to the transonic area rule are presented in
figure 2. The procedure for calculating the pressure distributions at
~ =0.85 will be describedin detail for the indented body configuration.

Perturbation velocity components induced by the wing alone.- For this
wing of large aspect ratio the taper effect is small.,and the formulas
given previously for determining the flow over untapered wings may be used.
The flow over the wing at ~ = 0.85 was obtained by the numerical evalua-
tion of eqyations (44) to (46) using the relationships of equtions (47)
to (~). (A constant sweepback angle of A = 40° was used.)

.

The locations of isobars at the wing surface are shown in figure 3.
These results were obtained by use of the thin-airfoil approximation

CP = -2U. The calculated perturbation velocities at the indented body
location are presented in figure 4 for several azimuthal locations (see
sketch (o)). The radisl component of the perturbation velocity at the
body surface;

‘(r)
=vcOse+w sine

and the average radial velocities,(eq. (95)), are presented in

(107)

figure 5.

Determination of the aKI.al source and multiple strength
distributions. - For this configuration the body shape is circular snd
the axial source and multipole strengths were obtained by the use of
equations (101) and (102). The variation of source strength with axial
station is shown in figure 6. Equation (102) was evaluated numerically
(see fig. 7 for typical variations of PAv(r) cos ne with e) and the

w
results for mul.tipolesof order n = 2, 4, and 6 are presented in
figure 8.

Wing-body juncture pressure distributions.- The stresanzl.se
perturbation velocities induced by the wing planar sources, axial sources,
and axial multiples of order n = 2, 4, and 6~or the aspect-mtio-6 wing
in combination with the indented and basic bodies are shown in figures 9
and 10. The difference in the flow fields about the two configurations is
primarily the result of differences in the strength distribution of axial
sources (see dso fig. 6). The influence of the axial multiples on the
flow field is comparatively small and decreases rapidly with an increase
in the order n of the multipole.

?

.

.

.
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A direct
distributions
~0 included

comparison of
for the basic

45

theoretical wing-body juncture pressure
and indented bodies is presented in figure 11.

in figure H is the theoretical pressure distribution at the
wing mid-senrispau(~ch is sufficiently far r&mved from the model center
line and wing tip so as to be essentially free of end effects in subsonic
flows.). For the indented body the juncture pressure distribution is almst
identical with the pressure distribution of the mid-semispan. AdditionaJ-
calculations at other spsmwise stations indicate that the isobar pattern
on the -g for the indented combination (excluding the local regions near
the wing tips) is essentially two-dimensional, that is, the isobars tend
to follow the local sweep lines of the wing.

Comparison With Experiment

A comparison of some theoretical and measured ~ressure coefficients
at ~ = 0.85 for the aspect-ratio-6 wing in combination with the indented
and basic bodies is presented in figures 12 and 13. The comparison of
theory and experiment is made for two body azimuthal locations,2 t3= 0°
md G = ~“. The measured pressures at a row of wing orifices in the
immediate vicinity of the body (see fig. 2) are al-soincluded in fig-
ures 12 smd 13 since it was felt that a comparison of theory snd ~eri-
ment at the ting-body junction would suffer somewhat from boundary-layer

● effects in the corners of the wing-body Juncture. h general, the theory
and experiment are in reasonably good agreement.

.
Similar comparisons of theory and experiment for the aspect-ratio-3

wing and body combinations shown in figure 14 are presented in figures 15
and 16. For this case the perturbation velocities induced by the wing
alone were evaluated by numerical means using the theory for wings of
tapered plan form. The location of isobars at the wing surface are shown
in figure 17. A convenient formula for obtaining the variation of the
local sweepback augle with Junction-chord station ~j is

~JKA
‘= ‘e(Eij)

= tan Ae(0) - —
P

(108)

2At the wing-body juncture the pressure orifices along the sides of
the bodies were located as close as possible to the upper surface of the
wing. The designation (3= 0° for the side row of orifices is used here
for convenience, althou@, at the wing-body juncture, the orifice loca-

. tions differed sli@tly from 61= 0° because of the finite thickness of
the wing.
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CONCLUDING REMARKS

NACA TN 3964

ti this report a theoretical method has been developed for determining
the linearized subsonic flow about symmetrical, nonlifting wing-body com-
binations. Particular emphasis has been placed on developing practical
methods for use in obtaining numerical results. As part of the present
analysis a theory was developed for determining the flow about noncircular
bodies by the use of axially distributed sources and multiples. The flow
over thin, nonlifting airfoils having symmetrical profiles was also studied
in considerable detsdl and it was shown that the concept of the oblique
source filament could be used for wings hawiq$ tapered as well as untapered
plan forms. This is of considerable importance since numerical results can
be obtained for the tapered wing almost as easily as for the untapered
wing.

.r-

hes Aeronautical Laboratory
National Advisory ~ommittee for Aeronautics

Moffett Field, Calif., Feb. 5, 1957
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Figure 17.- Isobars for the aspect-ratio-3 wing; ~ = 0.85.
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